f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
↳ QTRS
↳ Overlay + Local Confluence
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
F(cons(x, k), l) → G(k, l, cons(x, k))
G(a, b, c) → F(a, cons(b, c))
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
F(cons(x, k), l) → G(k, l, cons(x, k))
G(a, b, c) → F(a, cons(b, c))
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
F(cons(x, k), l) → G(k, l, cons(x, k))
G(a, b, c) → F(a, cons(b, c))
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(cons(x, k), l) → G(k, l, cons(x, k))
Used ordering: Combined order from the following AFS and order.
G(a, b, c) → F(a, cons(b, c))
trivial
cons1: multiset
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
G(a, b, c) → F(a, cons(b, c))
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)